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Anisotropy of foams 

A. T. HUBER, L. J. G IBSON 
Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, 
Massachusetts 02139, USA 

Cellular materials are often anisotropic, i.e. their properties depend on the direction in which 
they are measured. In this paper, we model the mechanical behaviour of anisotropic foams 
to describe the ratio of foam properties in two orthogonal directions in terms of the mean 
intercept lengths of the cells. Experimental measurements of the mean cell intercept lengths 
and of the mechanical properties of two polyurethane foams indicate that the model describes 
anisotropy well. 

1, I n t r o d u c t i o n  
Cellular materials are widespread. In nature they 
occur, for example, as wood, cancellous bone and 
cork. And man makes his own cellular materials in the 
form of honeycombs and foams. The size of the cells 
in such materials often varies with direction and 
because of this, the properties of the material, too, 
depend on direction: the material is said to be aniso- 
tropic. Honeycomb-like materials with prismatic cells 
are often strongly anisotropic: the Young's modulus 
of low-density woods, for instance, can be up to 100 
times larger along the grain than across it. Foams, too, 
are usually anisotropic, although less strongly so: 
the Young's modulus of a foam usually varies with 
direction by less than a factor of 4. 

Polymer foams made by pouring the polymer plus 
a hardener and a foaming agent into a mould (so that 
it rises like a loaf of bread) usually have cells which are 
elongated in the rise direction and equiaxed in the 
plane normal to it, giving an axisymmetric structure. 
The anisotropy in cell shape can conveniently be 
measured by the ratio of the mean intercept length in 
the rise direction to that in the perpendicular plane; we 
call this the shape-anisotropy ratio, R. The value of R 
for polymer foams is typically about 1.3 (Figs la, b); 
it varies from 1 for an isotropic foam to 10 or more for 
one which is very anisotropic, like the pumice shown in 
Fig. lc. Many foams are approximately axisymmetric, 
but some (depending on how they are made) are 
orthotropic: then all three principal dimensions of 
the cell differ, and two values of R are needed to 
characterize it. 

In this paper we model the mechanical properties of 
a foam in terms of the shape-anisotropy ratio, R. The 
results of the model are compared with measurements 
of cell size and mechanical properties for flexible and 
rigid polyurethane foams; they describe anisotropy 
well. 

2. Li terature  
The mechanical behaviour of isotropic cellular 
materials has been modelled by identifying and 
analysing the mechanism of deformation determining 
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each property. In particular, it has been found that the 
linear elastic behaviour of cellular materials is related 
to bending of the cell walls [1-5]; that elastic collapse 
in compression is related to cell wall buckling [4, 6, 7]; 
that plastic yield is related to the formation of plastic 
hinges in the cell walls [4]; that brittle crushing is 
related to the compressive fracture of cell walls [5]; 
and that the fracture toughness is related to the tensile 
fracture of cell walls [8]. Recently, a comprehensive 
model for the mechanical behaviour of isotropic 
foams has been developed [9]. 

Less attention has been directed at understanding 
anisotropic cellular materials. The mechanical proper- 
ties of simple honeycomb-like materials made up of an 
array of prismatic hexagonal cells can be related to the 
cell geometry, the volume fraction of solids and the 
cell wall properties in an exact way [10, 11]. The degree 
of anisotropy in the mecanical properties can then 
easily be found in terms of the cell geometry. Foams, 
with their more complicated geometry, are more dif- 
ficult to model. Harrigan and Mann [12] have shown 
that the shape of the cells can be characterized by an 
anisotropy tensor. Previous attempts to describe the 
anisotropy in Young's modulus have assumed that it 
is determined by the uniaxial deformation of the cell 
walls [12-16]. The difficulty with these models is that 
it is the bending rather than the uniaxial deformation 
of the cell walls which dominate the linear elastic 
behaviour of foams. We now model anisotropy in the 
moduli based on bending deformations in the cell 
walls, and extend the model to the elastic, plastic and 
brittle collapse stresses and to the fracture toughness. 

3. Analysis 
Typical compressive stress-strain curves for axi- 
symmetric flexible and rigid polyurethane foams are 
given in Fig. 2. The foams were loaded in the rise 
direction (X3) and in two perpendicular directions 
in the plane normal to the rise direction (X~ and ti2). 
The Young's modulus and the elastic and plastic col- 
lapse stresses are larger in the rise direction than in the 
plane normal to it; this is a common observation 
[13, 14, 16-19]. 
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Figure 1 Scanning electron micrographs of (a) an axisymmetric 
rigid polyurethane foam with a shape-anisotropy ratio, R of 1.4 
(ff = 32kgm- ) ) ,  (b) an axisymmetric elastomeric polyurethane 
foam with a shape-anisotropy ratio, R of 1.2 (~o = 28 kgm-3) ,  and 
(c) pumice, a natural foam. Deformation of the pumice while still 
viscous has distorted the cells giving a shape-anisotropy ratio, R, 
of 6. 

Here, for simplicity, we analyse anisotropy in axi- 
symmetric open-cell foam structures. The cell wall 
material is assumed to be isotropic so that the aniso- 
tropy of the foam arises solely from cell shape. In 
practice, the cell wall material may, itself, be aniso- 
tropic, as it is in wood, for instance: this then gives an 
additional contribution to anisotropy. Closed-cell 

foams tend to behave like open-cell ones if, as is often 
the case, the membranes across the cell faces are thin 
relative to the cell edges. The method is easily 
generalized to foams with orthotropic symmetry; the 
results are given in the Appendix. It is a simple exten- 
sion of the model developed by Gibson and Ashby [4] 
and Maiti et al. [8]. It differs fundamentally from those 
adapted by Kanakkanatt  [13], Mehta and Colombo 
[14], Cunningham [15] and Hilyard [16] who implicitly 
assume that all foam properties depend linearly on 
relative density. 

3.1. Linear elasticity: the moduli 
Fig. 3 shows an idealized open cell, typifying that in an 
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Figure 2 Typical compressive stress-strain curves for loading in two orthogonal directions in the plane normal to the rise direction (X~ and 
X:) and in the rise direction (X3) for (a) a flexible polyurethane foam (O = 28 kg m -3, 0.62 mm nominal cell size) and (b) a rigid polyurethane 
foam (O = 96kgm-3 )  . 
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Figure 3 An axisymmetric unit cell with a shape-anisotropy ratio, R 
of 1.5. 

axisymmetric foam: the rise direction is parallel to X3. 
Let the Young's modulus of the foam in the rise 
direction be E*, and that in the two directions normal 
to this be E* = E2*. We seek to calculate the ratio 
E*/E* in terms of the anisotropy ratio, R = h/l. 

A load in the X3 direction is carried by the four 
beams of length l, which respond by bending (Fig. 4a). 
The force, F, on each beam is proportional to 0-312, and 
the deflection, 63, of each is proportional to Fl3/Efl 
(where E~ is the modulus of the solid and I the second 
moment of area of the cell edge). The strain e3 is 
related to the displacement 33 by ~3 oc 53/h, where h is 
the height of the cell. Assembling these, we find 

0- 3 

~3 

C Es Ih 
l 5 

= CEs 7 

where C is a constant of proportionality. The equation 
reduces to the result for an isotropic foam given by 
Gibson and Ashby [4] when h = l, as, of course, it 
should. 

A load in the X~ direction is carried by two beams 
of length l and two of length h (Fig. 4b). The deflec- 
tion, 6~, of both sets must be equal, so that the load 
carried by the longer beams is less than that carried by 
the shorter ones; the first is proportional t o  EsI/h 3, the 
other t o  EsI/l 3. The total force is proportional to 0-1 hl, 
and the strain, el, to 31/l .  Assembling these, we obtain 

E* - ~1 _ C E s I ( I  1 )  
~1 2h l3 -}- h-~ 

_ ( )E1 + 

which, again, reduces to the isotropic result when 
h = l. Taking the ratio of these two equations, 
and writing R = h/l gives the Young's modulus 
anisotropy ratio 

E* 2R 2 
E *  - 1 + ( 1 / R  3) (1)  

Because loading in the rise direction deflects the 
shorter cell edges, of length l, the stiffness in the rise 
direction is greater than that for loading in the plane 
normal to it. The modulus ratio depends strongly on 
anisotropy: cells with a shape anisotropy of 2 have a 
modulus anisotropy of nearly 8. 

A similar analysis for the shear modulus shows that 
it is much less sensitive to anisotropy in cell shape. For 
loading in the X 1 - X  2 plane (Fig. 5a), we find that the 
load acting on each member of length I is proportional 
to qzhl  and that the deflection of each member of 
length l is proportional to q2hl4/Est 4. The shear strain, 
712, is proportional to 6/l giving a shear modulus in the 
XI-X2 plane of 

G* - "c12 
712 

where C is again a constant of proportionality. For 
loading in the XI-)(3 plane, the load is shared between 
two members of length I and two of length h (Fig. 5b). 
Equilibrium requires that P3 = P] h/l (PI and P3 are 
loads acting in the )(1 and the X 3 directions, respec- 
tively). The deflections of the beams of length h and 
l are proportional to P. h3/Est 4 and P 3 1 3 / E s t 4  respec- 
tively, giving a shear strain of 7 = 7~ + 73 oc 61/h + 
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Figure 4 Linear elastic deformation of the axlsym- 
metric cell under uniaxial loading in (a) the X3 
direction and (b) the Xi or X 2 direction. 
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Figure 5 Shear deformation of the axisymmetric cell 
in (a) the Xi-2"2 plane and (b) the XL-X3 plane. 

63/l oc Pl ( h2 + hl)/Es t 4. The resulting shear modulus 
in the X~-)(3 plane is 

a~3 = 2CEs (h/l) + 1 

and the shear modulus anisotropy ratio is 

G,~ 2 
= ( 2 )  

G* l + R  

Poisson's ratio is the negative ratio of a lateral to an 
applied strain. As a result, it is independent of relative 
density and depends only on the cell geometry. Dimen- 
sional arguments of the type used to calculate the 
Young's modulus and the shear modulus offer no 
insight into its dependence on cell geometry. We do 
not attempt a calculation of it here. 

3.2. Non- l inear  elasticity: the elastic 
collapse stress 

For loading in the X3 direction (Fig. 6), cell walls 
buckle when the load on them exceeds the Euler load, 
Fcr = n~7~ZEsI/h 2 where n 3 describes the rotational 
stiffness at the ends of the column for this direction of 
loading; it is related to the flexural stiffness of the 
members of length I. The load, F, is proportional to 
a312 giving 

Cn~ ~2 Es I 
(eel)3 - h2l 2 

where C is again a constant of proportionality. 
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Figure 6 Elastic buckling of the axisymmetric cell under uniaxial 
loading in the X 3 direction. 

3034 

Similarly, for loading in the X~ direction, For = 
n~n2EsI/l 2 and F oc alhl giving: 

Cn~ n2 EsI 
- 

hl 3 

In this case, n 1 is the rotational stiffness at the ends of 
the column for loading in the X~ direction and depends 
on the flexural stiffness of both the members of length 
l and of length h. Taking the ratio of these two and 
inserting R = h/l gives the elastic collapse ratio 

(a*)3 n~l  
= ( 3 )  

(a~), n~ R 

At first sight it appears that loading in the rise direc- 
tion, X3, should produce buckling at a lower load (and 
a lower elastic collapse stress) than for loading in 
either the XI or the X2 direction. But there is an 
additional effect controlling buckling. The rotational 
constraint at the ends of the long columns, n3, is 
greater than that at the shorter ones, n~, tending to 
stabilize them. Experiments, described below, show 
that these two competing effects almost cancel, giving 
a weak dependence on R. 

3.3. Plastic co l lapse  
Plastic collapse occurs when two plastic hinges form 
in each cell edge; this requires that the fully plastic 
moment, Mp, of the cell wall is exceeded. For loading 
in the X 3 direction (Fig. 4a), four edges of length l 
must collapse. The moment, Mp, on each is propor- 
tional to Fl and the force, F, is proportional to a 3l 2, 
giving 

cM0 
(%)3 - 13 

where C, once again, is a constant of proportionality. 
For loading in the X~ direction, on the other hand, two 
edges of length l and two of length h must collapse 
(Fig. 4b). The first pair support a force proportional 
to M o/l, while the other pair support a force propor- 
tional to Mp/h. The total force is a~lh, giving 

(O.p~)l = CMp ( + ~ ) 

Taking the ratio and substituting R = h/l leads to the 
plastic collapse ratio 

(6p~)3 _ 2R (4) 
(O'pl)l 1 + (l/R) 



The cells are thus stronger in the rise direction, 
although the anisotropy in strength is not as large as 
that in stiffness (Equation 1): cells with a shape aniso- 
tropy of 2 should have a plastic strength anisotropy of 
around 2.6. 

3.4. Brittle c rush ing  
The argument for the crushing strength, o-*, parallels 
that for plastic collapse with the yield strength of the 
cell wall replaced by its modulus of rupture. The result 
in Equation 4 with %* replaced by o-*. 

3.5. The fracture toughness 
The fracture toughness of an anisotropic foam depends 
on the direction in which the crack propagates. This is 
best defined with two subscripts, the first indicating 
the normal to the crack plane, the second the direction 
of crack propagation: thus (K*)3t is the fracture 
toughness associated with a crack on the plane normal 
to )(3, advancing in the X~ direction; the crack front 
lies parallel to X2. 

A far-away tensile stress applied in the X3 direction, 
a~:, produces a local stress at a distance r ahead of the 
crack tip of (Fig. 7) 

a?(rca) ''2 
( ,r  ~ ) , o . ,  - (27~r) I/2 

(K*)~, 
(2~r) 1/2 

for a crack of length 2a. The distance ahead of the 
crack tip to the next cell wall to fracture is proportional 
to 1. The force acting on the next cell wall is propor- 
tional to (O3)locJ 2 while the moment is proportional to 
that force times the length l 

M = (O'3)locaff 3 

Cell wall fracture occurs when the stress in the member 
reaches the modulus of rupture of the solid, ~rr~, or 
when the applied moment is proportional to o-f~t 3. 
Combining these expressions we obtain 

( ~ ) 3  C o . ~  (ga ) , / 2  C(K*)3, 
(O'3)loca I = Co-fs  = (/i:/)1/2 - -  (TIll)l/2 

(0 3) local 12 

/ 

Figure 7 Crack  p ropaga t ion  in the axisymmetr ic  cell for (/(*)3 ~ . 

T A B L E  I Aniso t ropy  in axisymmetr ic  foams 

E~* 2R 2 
EL* I + (I/R -~) (El* = E2*) 

Gt~ 2 
G~ 1 + R (G~ = G2'~) 

( O'e~ )3 g/~ 1 
(~), n, ~ R 

(a*0~ 2R 
, (%D~ = (%)2 (%), 1 + ( I /R)  

(o*) 3 2R = {~cr)~ 
(a~*~) I 1 + ( l /R )  (a~)l * 

(KIc)31 R * * 
" (Kic)31 = (Ki~)32 

(KI~)31 R312 (KI*c)I3 = (K*)23 
(Kl*c)13 

(X,~)i2 R,Iz (K,*), 2 = (Ki*)~ , 
(K~)~ 

o r  

, 
(Kic)31 = Co.fs ( :g/) l /2  

Similarly, we obtain for (K*)~2 and (K*)~3 

(K*),3 = 

Note that by 

= CO-fs 

symmetry, (K*)32 = (K*)31, 
(K~)21 = (K~)12 , and (K*)23 = (K*),3. The ratios of 
the fracture toughness for a given crack length, a, are 

(K%, 
(K*),2 

(K,c)31 
(K*),~ 

(K*),2 
(K*)~ 

= R (5a) 

_ R3/2 (5b) 

_ R~/2 (5c) 

The sensitivity of the fracture toughness to anisotropy 
depends on the direction of loading and on the direc- 
tion of crack propagation. A shape-anisotropy ratio 
of 2 produces a fracture toughness ratio of between 
1.4 and 2.8. 

The results of the analysis for axisymmetric foams 
are summarized in Table I. The method can easily be 
extended to the orthotropic case; the results are given 
in the Appendix. 

4.  E x p e r i m e n t a l  m e t h o d s  
The principal mean intercept lengths and mechanical 
properties of flexible and rigid polyurethane foams 
were measured. The flexible foam specimens all had a 
nominal density of 28kgm -3 and mean cell sizes of 
0.33, 0.43, 0.62, 0.82 and 1.95ram. The rigid foam 
specimens had nominal densities of 32, 64, 96, 128, 
and 160kgm -3. Cubic specimens of both types of 
foam were cut with one pair of faces normal to the rise 
direction indicated by the manufacturer. 

The mean intercept lengths of the foam specimens 
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Figure 8 A mierograph of  a replica of  the flexible polyurethane 
foam (~ = 28 kg m 3; nominal  cell size = 0.43 mm). 

were measured using digital image analysis of low 
magnification scanning electron micrographs. For the 
microscopy, small cubes of foam (about 5 mm on a 
side) were cut from a large block, adjacent to the area 
from which the mechanical test specimens were taken. 
The specimens were gold-coated and viewed in the 
SEM at 0 ~ tilt to eliminate distortion. On the micro- 
graphs of the open-cell foams it was difficult to identify 
a single layer of cells; to overcome this difficulty 
replicas of each surface of  these foams were made 
using Xantropren blue, a silicon-based plastic. The 
replicas were then photographed in the SEM; a typical 
example is shown in Fig. 8. Two specimens of each of 
the three perpendicular faces of each density of the 
rigid foam and of each cell size of the flexible foam 
were viewed. At least three micrographs of different 
locations on each specimen were taken. 

The micrographs of the foam structure were digit- 
ized using a bit pad and a digitizing pen. The mean 
intercept length of the cells was then calculated from 
the digitized micrograph using a computer program to 
count the number of intercepts along test lines at 10 ~ 
intervals through a full 180 ~ rotation. For  each angle 
of rotation, between 5 and 50 test lines were analysed. 
The data for the intercept length as a function of angle 
of rotation was then fitted to an ellipse using a least 
squares routine. The eccentricity of the ellipse gave the 
ratio of the principal mean cell lengths in the plane 
of the micrograph. A typical micrograph, digitized 
picture and best-fit ellipse for a rigid polyurethane 
foam are shown in Fig. 9. This procedure was repeated 
for micrographs in three orthogona~ planes for each 
specimen. 

The mechanical properties of the foams were 
measured for loading in the rise direction and for 
loading in two orthogonal directions normal to the 
rise direction. 50 mm cubes of both the rigid and 
the flexible foam were loaded in compression in an 
Instron testing machine which recorded the load and 
deflection during the test. Young's moduli and the 
elastic or plastic collapse stresses were calculated from 
the load-deflection curves. The fracture toughness of 
the rigid foam was measured on 25 mm x 25 mm x 
375mm notched beams (notch length = 12.5mm) 
loaded in three-point bending. 

5. Results 
The results of the tests are summarized in Tables II to 
IV. Table II shows the ratios of the mean intercept 
lengths of the cells. Three ratios are calculated from 
the measurements; the consistency of these results can 
be observed by comparing the value of R32 calculated 

T A  B LE  I I Measured shape-anisotropy ratios. Foam rise is in the X 3 direction. Standard deviations are given below each mean 

Foam type Nominal  Density R* 1 = 12/l I R32 = 13/l 2 R31 = 13/l I At  or O R32 = R3I/R2t R32 + R31 
cell size (kgm -3) R 2 
(ram) 

Flexible polyurethane 
(Q = 2 8 k g m  -3) 

Rigid polyurethane 

0.33 

0.43 

0.62 

0.82w 

1.95 

32 

64 

96 

128~ 

160w 

1.13 1.15 1.18 A 1.04 1.17 
0.06 0.03 0.11 
0.88 1.20 1.17 A 1.33 1.19 
0.07 0.05 0.09 
1.04 1.26 1.31 A 1.26 1.29 
0.04 0.04 0.04 
0.91 1.26 1.21 A 1.33 1.24 
0.02 0.12 0.13 
0.91 1.26 1.25 A 1.38 1.26 
0.10 0.11 0.04 

0.88 1.48 1.33 A 1.50 1.41 
0.08 0.09 0.11 
1.12 1.39 1.55 A 1.38 1.47 
0.06 0.12 0.18 
0.87 1.30 1.16 A 1.33 1.23 
0.07 0.15 0.01 
1.13 1.13 1.42 O 1.26 1.28 
0.03 - 0.04 
1.10 1.19 1.19 A 1.08 1.19 
0.01 0.08 0.06 

*,1,. is the mean intercept length of  the foam in the X~ direction and R u = t~/~j. 
t A = axisymmetric (R~2 = 1.0 and R32 = R31); O = orthotropic (Rlz e s R32 r R31 ). 
J; Only one measurement  for R3z was made for this foam due to difficulties with the microscopy. It was taken to be orthotropic because R21 
differs significantly from 1.0 and E~ differs significantly from E 2. 
w these two foams R~2 differs significantly from 1.0 due to the low sample standard deviations. R32 does not vary significantly from R3E 
however; because of this both foams were taken to be axisymmetric. 
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from the ratio o f  13/l 2 and that found by taking the 
ratio o f  R31/R21. The results are encouraging; in all 
cases the two values are within 10% of  each other. A 
t-test with 95% confidence intervals indicated that 
there was no significant difference between the X~ and 
)(2 directions for all o f  the foams except the 128 kg m 3 
rigid polyurethane.  With this one exception, the foams 
are axisymmetric and are described by a single shape- 
anisotropy ratio, R = h/l. The variat ion in R with cell 
size and density is shown in Fig. 10. 

Typical compressive stress-strain curves for the 
flexible and rigid polyure thane foams were shown in 
Fig. 2. Young ' s  modulus  was calculated from the 

TAB LE 111 Experimental results for Young's modulus and the 
the X 3 direction. The standard deviation for each property is given 

Figure 9 The measurement of the shape-anisotropy ratio, R. (a) A 
micrograph of a rigid polyurethane foam (0 = 96 kgm-3), (b) the 
digitized micrograph, and (c) the best-fit ellipse calculated from the 
mean intercept lengths of test lines at 10 ~ intervals. 

initial slope o f  the curve. The elastic collapse stress o f  
the flexible foam was taken to be the stress at which 
the two straight lines of  the linear elastic por t ion and 
the plateau port ion intersect. The plastic collapse 
stress o f  the rigid polyurethane foam was taken to be 
the upper yield stress before the stress plateau. The 
load-deflection curves for the fracture toughness tests 
on the rigid foams were all linear elastic up to the 
point  o f  fracture. The results o f  the mechanical  tests 
are summarized in Tables I I I  and IV for the flexible 
and rigid foams, respectively. As with the data  for 
the mean intercept lengths, the mechanical properties 
o f  the foams indicate that they are roughly axisym- 
metric: the data  can then be plotted in terms of  a 
proper ty  ratio (the proper ty  in the Y 3 direction to 
the average o f  the proper ty  in the X~ and the )(2 
directions) as a function o f  a single shape-anisotropy 
ratio, R = (R3a + R3,)/2. Data  for the Young ' s  
modulus,  the elastic and plastic collapse stresses and 
the fracture toughness o f  axisymmetric foams with 
shape-anisotropy ratios varying f rom 1 to 1.6 are 
shown in Figs 11 to 14. The data  for the 1 2 8 k g m  -3 
rigid polyurethane foam has been omitted f rom the 
plots as it is or thot ropic  rather than axisymmetric; the 
equations for orthotropic foams given in the Appendix 
describe these results reasonably well. The data for the 
1.95 mm flexible polyurethane has also been omitted 
as it is far out o f  line with the rest of  the data.  The 

elastic collapse stress for flexible polyurethane foams. Foam rise in 
below the mean value 

Nominal 
cell size 
(mm) 

Young's modulus (kNm 2) 

El* E* 

Elastic collapse stress (kN m -2) 

0.33 145 161 
8.6 9.4 

0.43 101 138 
3.7 6.9 

0.62 108 109 
1.8 4.0 

0.82 97.7 107 
6.6 3.7 

1.95 62.8 65.8 
3.7 4.2 

273 5.57 5.79 6.09 
22 0.13 0. i7 0.18 

206 4.76 5.62 5.41 
16 0.07 0.14 0.18 

213 4.93 4.88 5.43 
7.5 0.06 0.26 0.08 

213 4.83 4.99 5.47 
14 0.10 0.13 0.10 

275 3.39 3.43 5.30 
20 0.16 0.19 0.06 
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Figure 10 The shape-anisotropy ratio, R, plotted against (a) cell size and (b) density. (a) Flexible polyurethane foam, nominal density 
28 kgm 3; (b) rigid polyurethane foam, nominal cell size 0.2mm. 

reason for this is not clear; it may be that the measured 
shape-anisotropy ratios are less reliable for this foam 
as fewer cells were measured or it may be that there is 
a size effect which had not been modelled. 

6 .  D i s c u s s i o n  
All of the foams, with the exception of the 128 kg m- 3 
rigid polyurethane, are axisymmetric with a shape- 
anisotropy ratio, R, of between 1.1 and 1.5. The shape- 
anisotropy ratio tends to increase with cell size and 
decrease with density. Dawson and Shortall [20] found 
a similar dependence on density, although shifted 
relative to the data reported here (Fig. 10). This effect 
is expected intuitively. As the thickness of the cell wall 
increases with density (for cells of the same size), the 
interal gas pressure within the cell cannot lift the 
additional weight of  the cell wall as high, reducing the 
elongation of  the cell. 
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Figure 11 The Young's modulus ratio ~3/r*/E*L, plotted against the 
shape-anisotropy ratio, R. The solid line is given by Equation l. 
(o) PU(R), ([3) PU(F), both present work; (A) polyisocyanurate, 
Gupta et al. [19]; (0) PU(F), Hilyard [16]; ( I )  PS, Metha and 
Colombo [14]. 
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As expected, Young's modulus is the most sensitive 
property to anisotropy in the shape of the cells, with 
ratios of  E~/E* of  up to 4 measured. The solid line of  
Fig. 11, given by Equation 1, describes the data of  this 
study and several others well. The next most sen- 
sitive property to anisotropy in cell shape is the plastic 
collapse stress, and it, too, is well described by the 
model (Equation 4, solid line in Fig. 13) with only a 
slight underprediction of  the data. 

The results for the remaining two properties, the 
elastic collapse stress and the fracture toughness, are 
more difficult to interpret. Both are much less sensitive 
to anisotropy in cell shape. As indicated in the analysis, 
there appear to be two competing effects determining 
the elastic buckling load: the length of  the column and 
the end rotational stiffness. The first leads to a lower 
buckling stress in the rise direction (so that the ratio 
(%)3/(a~0~ is less than 1); the second clearly increases 
the buckling stress in the rise direction, but it is dif- 
ficult to estimate by how much. The data indicate a 
weak dependence on the shape-anisotropy ratio of  
roughly R ~/2 (dashed line, Fig. 12). 
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Figure 13 The plastic collapse stress ratio, (CrpO3/(apl)l, plotted 
against the shape-anisotropy ratio, R. The solid line is given 
by Equation 4. (e)  PU(R), present work; (A) polyisocyanurate, 
Gupta et  al. [19]. 

Because of limitations in the available dimensions 
of specimens for the fracture toughness tests, the frac- 
ture toughness ratio was measured only in the direction 
we expect to be the least sensitive ((K*)I2/(K*)13 = 
RJ/2). The data show even less dependence on cell 
shape than this; for values of R up to i.5, there is 
virtually no dependence of(K*)~2/ (K*) l  3 on cell shape. 
Additional tests for the fracture toughness ratios are 
required to understand the effect of anisotropy more 
fully. 

7. C o n c l u s i o n s  
The model of Gibson and Ashby [4] has been extended 
to describe anisotropy in foams. Equations for the 
ratios of the moduli, the elastic, plastic and brittle 
collapse stresses and of the fracture toughnesses in the 
rise direction to those in the plane normal to it are 
given. Measurements of cell shape and mechanical 
properties for a flexible and a rigid polyurethane foam 
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Figure 14 The fracture toughness ratio, (Ki~)t2/(K~c)l s ,  plotted 
against the shape-anisotropy ratio, R. The solid line is given by 
Equation 5. (O) PU(R), present work. 

indicate that the equations for the Young's modulus 
ratio and the plastic collapse ratio, the two most 
sensitive properties to cell shape, describe the data 
well. Additional modelling of the effect of the column 
end restraint is needed to understand the effect of cell 
shape on the elastic collapse stress ratio. Additional 
data for the fracture toughness of foams loaded 
in all three directions and with all possible crack 
propagation orientations are also necessary to under- 
stand further anisotropy in foams. 
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0.50 0.77 2.37 0.019 0.041 0.068 0.9 1.1 

96 11.3 11.4 25.6 0.862 0.876 1.290 61.5 62.0 
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Appendix. Summary of equations for 
orthotropic cellular solids 

Property Orthotropic case 

E* EI--~* (RI2)2 [ 
1 + (R32) 3 1 
1 + (R3~)3 / 

i l  + (R,31~ ~*E* (R~3)~ 1 + (R,:)~J 
E3* (R31)2 [ 1 -[- (R21)3"~ 
El* 1 + (R23)3J 

G~" 2 1 + R32 
G~3 1 + RI2 

G~ 1 + RI3 

G~I 1 -}- R23 
G~I 1 + R21 
G* 1 + R31 

(o~)3 
R21 

( 0-2 )e~ 

R32 (a3)* 
(~)2 

RI3 (~,)~ 

(~ (Rt2)2 11 + + (R13) (R23~---'2) 

(az)p* I 1 + (R3I)~ 
(~3)'1 (R23)2 1 + (Rz,)A 

(~ ' (Rs l )2 [ [  + (RI2) 1 
(0" I )p'~ I § (R32) 

(O- 1 )c*r (RI2)2 [~  § (R23) ~ 
(o2)* + (Rt3) J 

(~ (R23)2 [ l i  + (R31)~ 
(a3)* + (R21) J 

(~0: (&,)~ [~ + (RI~) ~ 
(,~,)~ + (R3~) J 

(KI~)~* 
(Kic)~ RO 

(KI~)* 
(K,~)* (RJ~ 

(gi~)~* 
(K,c)~* 
(Kit); R~J (Rki)I/2 

(K~)k*j ""~ ~ j~' 

l i is the mean intercept length of the foam in the X~ direction and 
Rq = lff! j. 
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